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Abstract. The numerical solution of the Bethe amnlz equations of an integrable SU(Z)-invarIant 
generalization of the spin-S antiferromagnetic Heisenberg chain (TaMtlajian-Babujian model) 
wilh a spin-S' impurity in zero magnetic field is presented. The entropy, specific heat and 
susceptibility of an impurity of spin S' are oblained numerically as a function of the spin 
S of the chain Three situations have to be distinguished (i) if S' = S the impurity just 
corresponds 10 one more site in the chain; (ii) if S' > S lhe impurity spin is onfy partially 
compensated (undercompensated) at T = 0, leaving an effective spin of (S' - 5'): (iii) if S' < S 
(overcompensated) the entropy has an essential singularity at T = h = 0, giving rise to critical 
behaviour as Ir and 7 tend to zro. These properties are in close analogy with those of the 
nchannel Kondo problem. "he thermodynamics of the IWO models is compared. 

1. Introduction 

The isotropic spin-f antiferromagnetic Heisenberg chain was first diagonalized by Bethe 
[I]. The standard extension of the Heisenberg chain to spin S > f is unforh~nately not 
integrable. However, an integrable SU(2)-invariant generalization of the isotropic chain of 
arbitrary spin S has been diagonalized I2-61 and its thermodynamics has been obtained. 
Even though this model is different from the standard extension of the Heisenberg model 
to arbitrary spin S, it is expected that its low temperature properties are similar and it has 
received attention in the literature. 

The SU(2) generalization of the standard Heisenberg model (Babujian-Takhtajian model 
[6,3]) is given by 

where E, is such that the interaction energy of the state with all spins S parallel vanishes, 
h is the magnetic field, N is the number of lattice sites, and .&(x) is given by 

Here @ is the digamma function. The antiferromagnetic case is obtained by taking the 
coupling constant J = 1. The ferromagnetic case corresponds to J = -1. We will take 
J = 1 in the rest of the paper. 
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The SU(Z)-invariant spin chains remain integrable if a link to an impurity site is added 
to the chain, provided that the interaction between the impurity spin and its neighboring 
spins is of a special form. For a chain of spin 1 and an impurity of arbitrary spin S' the 
interaction Hamiltonian was constructed by Andrei and Johannesson [7]. The case of a 
spin-I chain with an impurity of arbitrary spin was also diagonalized [SI as well as that 
of a spin4 chain with a spin-; impurity [9]. The case of a spin4 chain with an arbitmy 
impurity spin S' can be extended from the solutions of the previous cases 191. 

Three situations have to be distinguished. (i) If S = S' the impurity just corresponds to 
one more site in the chain and its properties are identical to those of the other spins [6].  In 
this case the ground state is a singlet due to the antiferromagnetic coupling. (ii) If S' S 
the spins of the chain are not able to compensate the impurity spin S' into a singlet at low 
temperatures [7,8]. The presence of a small magnetic field completely orients the remaining 
effective spin (S' - S) at zero temperature [9]. (iii) If S' c S a perfect compensation of 
the impurity spin by the neighboring lattice sites cannot take place and the remaining spin 
degrees of freedom induce unusual physical properties. The T = 0 entropy has an essential 
singularity at h = 0: at h = 0 the ground-state entropy is finite and corresponds to a 
fractional spin dependent on both S and S' [9]. When h # 0 the entropy becomes zero 
[9]. The low-temperature low-magnetic-field thermodynamic quantities show power-law 
behaviour with critical exponents. The susceptibility and C/T, where C is the specific 
heat, diverge as h and T tend to zero. The exponents depend only on the spin of the chain 
and not on the impurity spin, since the critical behaviour is a consequence of the collective 
excitations of the lattice. 

A similar behaviour has been found for the n-channel Kondo problem [10-13] with a 
spin S' impurity with n = 25, where n is the number of orbital channels of the conduction 
electrons. In this model the conduction-electron spins interact antiferromagnetically with the 
impurity spin. If n = 2s' the number of conduction-electron channels is exactly sufficient to 
compensate the impurity spin into a singlet, giving rise to Fermi-liquid behaviour. If n < 2s' 
the impurity spin is only partially compensated. since there are not enough conduction- 
electron channels to yield a singlet ground state. This leaves an effective degeneracy (in 
zero field) at low temperatures of (2s' i- 1 - n). If n z 2s' the number of conduction- 
electron channels is larger than required to compensate the impurity spin. The impurity 
shows critical behaviour [ I  I ]  as in the corresponding case of the Heisenberg model. 

In this paper the thermodynamic Bethe ansutz equations of the Heisenberg model (91 are 
numerically solved in zero magnetic field for S < and S' < 4. In particular the entropy, 
specific heat and susceptibility are obtained and the results compared to those obtained for 
the Kondo model [ 12.131. 

In section 2 we review the thermodynamic Bethe ansatz equations and the numerical 
procedure used to solve them. The results are presented in section 3 and are compared to 
those obtained for the Kondo model. We conclude with section 4. 

2 Bethe ansatz equations and numerical procedure 

The thermodynamics of model equation (1.1) for a spin-S chain, can be obtained from the 
thermodynamic Bethe ansatz equations derived in [6].  They consist of an infinite set of 
non-linearly coupled integral equations for functions qx(A). which characterize the string 
excitations of order k with real rapidity A. A shing excitation of order k represents a 
bound-magnon state of k magnons. A convenient representation of these integral equations 
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is the recursion sequence 

In Vk(A) = G * In ( (1  + q r - l ) ( 1  -I- qr+i)l - k(J/T)&,zsG(A) k = 1,2,3. ... 
q o = O  (2.1) 

where the star denotes a convolution and 

G(A) = l/[4 cosh(;nA)]. (2.2) 

These equations are completed by the asymptotic condition 
1 h 

lim -Inqr(A) = -. (2.3) 
k-m k T 

The free energy per site of the model is given by 
oa 

Fzs(T, h)  = Fzs(O, 0) - T dA G W l n  + ?~s (A) l .  (2.4) L 
The presence of an impurity in the chain does not affect the structure of the 

thermodynamic Bethe amak equations [9]. The driving term in equation (2.1) remains 
unaltered at k = 2s. The lowest-energy excitations are 2s magnon bound states that are 
characteristic of the excitations of the ‘bulk’. The free energy of a spin-S’ impurity is given 
by equation (2.4) if we replace 2s by 2s’. Solving the set of equations (2.1) for all k, we 
can obtain the free energy of any impurity of arbitrary spin S‘ if we select the appropriate 
solution of qr .  By differentiation of the free energy we can obtain the thermodynamics of 
both the chain spins and an arbitrary impurity 191. 

In the limits lAl -+ CO, the A dependence in equation (2.1) becomes irrelevant and the 
equations can be solved analytically. In this limit the driving term of the integral equations 
vanishes, so that this situation corresponds to a free spin (high-temperature or weak-coupling 
limit). Keeping A fixed and T + CO, the driving term can also be neglected. Since the 
integration kernel falls off exponentially, the functions q k  are constants in this limit and 
the integral equations reduce to a set of algebraic equations whose solution is fixed by the 
asymptotic condition equation (2.3) 

(2.5) q k  = [sinh((k + l ) h / 2 ~ ) /  sinh(h/2T)I2 - 1 

which is the expression for a free spin. 
In the low-T limit the driving term becomes dominant and the lowest-energy excitations 

are bound-states of 2 s  magnons that travel through the chain. All other states are frozen 
out at very low T. 

The influence of the driving term decreases with increasing k. In the large-k limit the 
solution for qk(h)  asymptotically approaches the free-spin value equation (2.5) for all A. 

For intermediate values of A and k the recursion sequence (2.1) has to be solved 
numerically. The procedure to solve the thermodynamic Bethe amatz equations numerically 
is standard [14]. Since these equations depend explicitly on the temperature they are solved 
for a fixed value of T. Since the influence of the driving term decreases with increasing 
k we may truncate the recursion relation by replacing q k  for k = kc by the large-k free- 
spin limit (2.5). The numerical problem then reduces to the simultaneous solution of a 
finite number, i.e. kc. of coupled integral equations. Also, the range of values of A is 
truncated at &Ac, where q,(A) have reached their asymptotic value (2.5). For a given 
pair of kc and Ac we solve equations (2.1) iteratively and obtain the free energy through 
equation (2.4). The derivatives of the free energy are obtained numerically. The accuracy 
of the truncation procedure can be tested by studying the dependence on k, and Ac of the 
free-energy derivatives. 
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Using this numerical procedure the thermodynamics (entropy, specific heat and 
susceptibility) of a spin S' impurity in a spin S antiferromagnetic Heisenberg chain in 
zero magnetic field is presented. The results for the thermodynamics are shown in section 3 
as a function of S', Sand T. The parameters used in the numerical procedure were selected 
to achieve an accuracy of better than one percent for the temperature derivatives and a few 
percent for the susceptibility and the specific heat when S # S' for the higher spins. 

3. Results 

Using the numerical procedure described in the preceding section we obtained the entropy, 
specific heat and susceptibility as a function of temperature for S' 6 $ and S < $. 

As already discussed in section I ,  at low temperatures we have to distinguish three 
qualitatively different situations: (i) the undercompensated impurity, S' > S; (ii) the totally 
compensated impurity spin S' = S; and (iii) the overcompensated case, S' c S. In the high- 
and low-T limits the recursion sequence (2.1) can be solved analytically. It is useful to 
state the results obtained in these two limits since they can be used as tests for the accuracy 
of the numerical procedure. 

In the high-temperature limit the functions q h  can be replaced by their asymptotic limit 
(2.5). The free energy of the impurity in this limit is given by 

FZS, = -T In [[sinh(ZS'+ I)h/2T]/sinh(h/2T)) (3.1) 

which is the expression for a free spin S'. In this limit the impurity spin is effectively 
decoupled from the chain spins. 

The low-T behaviour shows a richer behaviour as a function of S' and S. In the limit 
T -+ 0 and finite field h, the three cases behave differently. If S' = S the impurity is just 
one more site in the chain and its thermodynamics is the same as for the pure chain 161. 
The zero-temperature zero-field susceptibility is finite indicative of a ground-state singlet: 

x (T  = 0) = 2S/nz (3.2) 

For S' > S, on the other hand, we obtain [9] for small fields that at T = 0 the impurity 
has an effective spin (S' - S) that is weakly coupled to the spins of the chain. Finally, if 
S' < S the impurity is overcompensated [9] and the susceptibility diverges as h-'+'lS as 
h -+ 0. Hence, the collective behaviour of the impurity interacting with the magnetic chain 
leads to critical properties. Note that the critical exponent only depends on the spin of the 
chain, S, and not on S' except for the restriction S' < S. If S = I (and S' = i), the field- 
dependent term is not a power law but in this case the susceptibility diverges logarithmically 
as h 3 0 (as for the quadrupolar Kondo effect [15,16] and a two-level system interacting 
with conduction electrons in a metallic glass [17,18]). 

For the zero-temperature entropy we again have to distinguish between several cases. 
If S' = S. i.e. for the Babujian-Takhtajian model, the entropy of the ground state vanishes 
independently of the field 

S(h,  T = 0) = 0. (3.3) 

Hence, the ground state is a singlet, which is consistent with the result for the susceptibility, 
equation (3.2). For S' > S we obtain [9]  

(3.4) S(h = 0. T = 0) = In [2(S' - S) + I ]  S(h # 0, T = 0) = 0 
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i.e., in zero field the undercompensated-impurity case leads to an effective spin (S' - S), 
as discussed above. If the field is non-zero the Zeemann splitting lifts the spin degeneracy 
and a singlet is obtained. Finally, if S' e S we have [9] 

S(h = 0, T = 0)  = In[[sinn(ZS' + 1)/(2S + Z)]/[sinn/(ZS + Z)]} 

S(h f 0, T = 0) = 0 
(3.5) 

so that the efective zero-field degeneracy is not an integer but fractional. 
We review now the low-T specific heat andsusceptibility of the impurity. For S' = S the 

ground state is always a singlet. The specific heat is proportional to T at low temperatures: 

Cs = YST YS = 2S/(S + 1) (3.6) 
as confirmed via conformal field theory [19]. The limits T -+ 0 and h -+ 0 cannot be 
interchanged. The point h = T = 0 is singular and the value of ys depends on the order 
of the limits [ZO]. If S' > S the remaining spin degeneracy of (S' - S )  gives rise to a 
Schottky anomaly for h N T and the zero-field susceptibility diverges with a Curie law 
corresponding to an effective spin (S' - S). For the overcompensated case SI c S, C / T  
and x diverge with a power law (unless S = 1, and S' = i) in zero field as T -+ 0 [9]: 

(3.7) 
If S = I and hence S' = i, on the other hand, the critical exponent vanishes and the 
divergence is logarithmic [9]: 

C / T  N I ~ ( K / T )  x - I n ( n / T ) .  (3.8) 
Since the field and the temperature have different scaling dimensions, 1 / S  and 4/(2S + 2). 
respectively, the limits T -+ 0 and h -+ 0 cannot be interchanged. 

These results are in close analogy with those displayed by the n-channel Kondo model 
with an impurity of spin S' and n = 2s' (for a review, see [21]). In this limit the integral 
equations (2.1) can be recast in a form that is equivalent to the thermodynamic Bethe ansafz 
equations of the n-channel Kondo model [ l l .  121. In the high-temperature limit the impurity 
spin of the n-channel model becomes effectively decoupled from the conduction electrons, 
and this situation is equivalent to that observed in the Heisenberg model. Since the two 
limits of low and high T are equivalent in the two models it is interesting to compare their 
thermodynamics in the intermediate regime. 

We consider now the thermodynamics in zero magnetic field using the numerical 
procedure discussed above. We consider first the temperature dependence of the entropy. 
In figure 1 we show the numerical results for h = 0 for three spins S' = (a), S' = $ 
( h )  and S' = ; (c),  as a function of T. The value at high temperatures is independent of 
S and is given by In (2s' + l), the value of a free spin S' decoupled from the chain. The 
crossover to the low-T regime occurs around T = J = 1. At low T the entropy depends on 
the value of S very strongly. For S = S' the T = 0 entropy is zero due to the singlet state. 
If S # S' the T = 0 entropy is finite due to the degeneracy of the ground state. For S' > S 
the entropy is given by equation (3.4). corresponding to an uncompensated impurity spin 
(S' - S). In the case S' e S the T = 0 entropy is given by equation (3.5). This behaviour 
is similar to that one observed in the n-channel Kondo model [12, 131. We note however 
that the high-temperature limit is reached at a temperature of the order of T N 5-10, while 
in the Kondo problem this limit is only reached asymptotically. Also, the crossover regime 
is narrower than in the Kondo case. 

In figure 2 the results for the entropy for the impurity spins S' < ; are shown for a 
given value of the spin of chain: S = 5 (a), S = 1 b and S = 2 c . The two limits 

C / T  y T-l+4/'2s'2' X N T  -1+4/(25+2), 

2 0  2 0  



7004 P D Sacramento 

5'=1/2 

..,/ 
0 8  I 

Figure 1. Entmpy as a function of temperature for the 
chain spins s < ;1 of an impurity of spin (U) $. (b) 
4 and (c) $. Only when S = S' is lhe ground-state a 
singleL When S c S' lhe envopy at zero T is that of an 
essentially free spin S' - S. When S > S' the entropy 
mmponds  10 a fractional spin. In the high-7 limit the 
emropy corresponds to a free impurity of spin S'. Note 
that at a temperarure of the order of 10 the high-7 value 
has teen reached for all chainspin values. 

equations ((3.4) and (3.5)) are clearly shown. In the case S = 1, the values of S' satisfy 
S' > S (undercompensated) and the impurity entropy at T = 0 is given by equation (3.4). 
When S = ;, the cases S' = 2. $ satisfy the same condition but the cases S' = 1, I satisfy 
S' i S (overcompensated). In this case the zero-T entropy corresponds to a fractional spin, 
equation (3.5). Note the crossing of the S' = S = 1 curve to zero entropy due to the singlet 
ground-state. When S = a all S' c 2 correspond to the overcompensated case. 

In figure 3 we show the specific heat as a function of T for the impurity spins S' = 4 and 
S' = $ ( ( U )  and ( h )  respectively). The specific heat is just the slope of the entropy curves 
multiplied by T. The peak corresponds to the Heisenberg antiferromagnetic interaction with 
the chain magnons. The integral of the specific heat weighed by 1/T gives the reduction 
of the entropy from the high-T value to the low-T one. The largest entropy reduction is 
for S = S', and accordingly the peak is higher for this value of S. The peaks are centred 
around T E 0.4-0.5. When S > S' the height of the peak decreases with S. When S c S' 
the height of the peak increases with S. The two cases can be found when S' = (b). The 
behaviour is similar in the Kondo model [13]. 

In figure 4 the ratio C /T  is shown to highlight the low-T behaviour. If S # S', C / T  
diverges as equation (3.7) or (3.8). In this case the model scales into a strong-coupling 
fixed point with a finite value of the interaction constant. A fixed point with finite coupling 
leads to critical behaviour and to power-law dependences in thermodynamic properties as 
T -+ 0. The logarithmic divergence when S = 1 and S' = f is clearly seen in figure 4(a). 
When S = S', C / T  is a constant given by equation (3.6), indicative of a singlet ground 
state. A similar situation is found in the n-channel Kondo problem [IZ, 131. However, in 



Figure 2. Enmpy versus temperature of the impurity 

and (c) S = :. 0.01 0.1 ,M ,.+U spins S' < for the chain spins ( U )  S = $, ( b )  S = $ 0.0 om, 
I . r p " D b n  

the intermediate-temperature regime around T cz 1, C / T  for S = S' shows a maximum 
as a function of temperature [22]. This result is in contrast to that observed in the Kondo 
model where C f T is monotonic. The same feature is noted for the other values of S around 
the same temperature. This result can be understood due to the sharper crossover from the 
high-temperature limit to the low-temperature limit observed in the entropy (figure 1) in 
comparison to the Kondo screening [22]. This implies larger values of the specific-heat 
peak amplitude to remove the entropy in a smaller temperature interval. 

The susceptibility for the impurity-spin values S' = 4 and $ is shown in figure 5(a) 
and (6). respectively, for values of the chain spin S 4 $. The form of these curves is 
similar to that found for C / T .  Curie-like behaviour for a spin S' is approached at high 
temperatures. Note that the curves for the various values of S merge at a temperature of 
the order of T N 1-10 K. The curves show the finite value of x for the singlet ground 
state for S = S'. Note that this curve shows a maximum as a function of temperature, as 
found for C/T [ZZ]. This is again in contrast to the results obtained for the Kondo model 
[12,13]. If S > S', ,y diverges as T + 0 according to equation (3.7) or (3.8) in the case 
S' = 4, S = 1. If S < S', x diverges with a Curie law corresponding to an effective spin 
(S' - S). When S # S' the curves also show a small peak around T cz 1, as when S = S'. 
This peak is especially noted when S z S' (overcompensated). If S < S' the susceptibility 
crosses smoothly over from a Curie law with a Curie constant corresponding to a spin S' 
at high T to another corresponding to a spin (S'- S) at low T .  

((a) and (6). 
respectively). The case S = S' is noted for the finite value of ,y as T --t 0. The cases 
S' > S and S' < S are clearly displayed. In the first case x Y 1/T and in the second 
case x shows critical behaviour (equations (3.7) and (3.8)). Note again the presence of the 

In figure 6 we show the susceptibility for S' 4 4 with S = 4, 
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5'=1/2 

S=3/2 

Figure 3. Specific heat for the chain-spin values S 6 5 
of M impurity of spin (a )  S' = 4 and (b) S' = 3. The 
highest & is obkined when S = S' since there is 
more entropy to be removed from the high-temperature 
limit to the zero-temperalure value. When S' = all 
values of the chain spin S cormpond Lo S 2 S'. When 
S' = the cases S = 1. 1 correspond to S' > S and 
the cases S = 2. 2 to S' c S. 

Figure 4. Specific heal over temperature versus 
temperaNre for the chain-spin values S < of an 
impurity of spin (a) S' = 1 and (b) S' = i. When 
S = S', C/T is finite at zero temperature and displays 
a maximum as a function of temperature. When S c S', 
C/T diverges Companding to an essentially free spin 
of value S' - S. When S > S' the c w e  shows critical 
behaviour (see text). In the mxe of S = 1 and S' = 
the divergence is logarithmic as clearly shown in (a). 

maximum in x around T rr 1, especially noted for S' 4 S. 
At low T and for small h the Bethe ansaIz equations of the Heisenberg model are 

identical to those of the Kondo model [9]. In the presence of a field it is expected that the 
divergences are quenched and the low-T y values become large but finite and constant at 
very low T. The same is expected for the susceptibility curves for S # S'. When S = S' 
a small field has almost no influence. The presence of a field quenches the degeneracy 
of the ground state and the zero-T entropy becomes zero for all values of S and S' 191. 
Similarly to the case observed in the Kondo model it is expected that the specific heat shows 
a double-peak structure when S > S'. 

4. Conclusions 

Exact results for the entropy, specific heat and susceptibility of the SU(Z)-invariant 
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s = t / 2  5=1/2 

Figure 5. Susceptibility versus lemperature for L e  
chain-spin values S < ; of an impurity of spin (a) 
S' = f and (b) S' = $. When S = S' the susceptibility 
is finite. indiclive of a singlet gmund s t a k  When 
S' > S the behaviour is that corresponding lo a free 
spin S'- S with a Curie-like behaviour as in the high-T 
limit but with a modified Curie constam When S > S' 
Ihe susceptibility shows critical behaviour (see text) as 
for the C / T  curves. In the case s = I .  S' = i the 
dependence in the temperature is logarithmic as CM be 
seen in (U). Note that (b) is shown in a log-log scale. 

Figure 6. Susceptibility versus temperature in a log- 
log scale of the imptuityspin values s' < for the 
chain spin values ( U )  S = $ and (b) S = 4. 

antiferromagnetic Heisenberg chain of spin S with a spin S' impurity in a zero magnetic 
field have been obtained by solving the thermodynamic Bethe ansatz equations numerically 
[6,9]. Three situations have to be distinguished (i) the undercompensated impurity; (ii) the 
totally compensated spin; and (iii) the overcompensated impurity. The physical properties 
are qualitatively different for the three cases at low temperatures. When S = S' the ground 
state is a singlet and C / T  and the susceptibility are finite. When S < S' the impurity 
behaves like a free spin with an effective spin (S'- S). The case S > S' is more interesting 
since it shows critical behaviour at low T .  

The high- and the low-temperature limits of the thermodynamics of the impurity in the 
Heisenberg model and the Kondo model are identical. In the intermediate regime it has 
been found that there are notable differences between the two models when S = S' [22]. 
In this work it was shown that the difference is also observed when S # S'. In contrast to 
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the monotonic temperature behaviour of the susceptibility and C/T in the Kondo model, it 
was found that both these quantities show a local maximum as a function of temperature. 
When S = S' this is the absolute maximum but in the cases S # S' the low-T divergences 
dominate. The bump around T -5 1 is especially noted in the cases S > S'. 
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